The Importance of the Dissociation Rate in Ion Channel Blocking
نویسندگان
چکیده
Understanding the relationships between the rates and dynamics of current wave forms under voltage clamp conditions is essential for understanding phenomena such as state-dependence and use-dependence, which are fundamental for the action of drugs used as anti-epileptics, anti-arrhythmics, and anesthetics. In the present study, we mathematically analyze models of blocking mechanisms. In previous experimental studies of potassium channels we have shown that the effect of local anesthetics can be explained by binding to channels in the open state. We therefore here examine models that describe the effect of a blocking drug that binds to a non-inactivating channel in its open state. Such binding induces an inactivation-like current decay at higher potential steps. The amplitude of the induced peak depends on voltage and concentration of blocking drug. In the present study, using analytical methods, we (i) derive a criterion for the existence of a peak in the open probability time evolution for a model with an arbitrary number of closed states, (ii) derive formula for the relative height of the peak amplitude, and (iii) determine the voltage dependence of the relative peak height. Two findings are apparent: (1) the dissociation (unbinding) rate constant is important for the existence of a peak in the current waveform, while the association (binding) rate constant is not, and (2) for a peak to exist it suffices that the dissociation rate must be smaller than the absolute value of all eigenvalues to the kinetic matrix describing the model.
منابع مشابه
Simulation study of the transport properties of ions through ion channels serving as primary components of a nanobiosensor
Ion channels are naturally occurring pores through the proteins that regulate the passage of ions and thus maintain the concentration of ions inside and outside the cell. The ion channels control many physiological functions and they can show selectivity for a specific ion. Ion channels are mostly observed in nerve cells and muscle cells. The influx of ions into cells can be regulated by a gate...
متن کاملSimulation study of the transport properties of ions through ion channels serving as primary components of a nanobiosensor
Ion channels are naturally occurring pores through the proteins that regulate the passage of ions and thus maintain the concentration of ions inside and outside the cell. The ion channels control many physiological functions and they can show selectivity for a specific ion. Ion channels are mostly observed in nerve cells and muscle cells. The influx of ions into cells can be regulated by a gate...
متن کاملP 134: Use of Zinc in Drugs to Improve Neuroinflammation Disease
Zinc is a substance that regulates neural excitability by binding whit sodium channel and potassium channel. The efficiency of free zinc ion, make down the neural survival rate, reduced the peak amplitude of Na+ and make depolarization Na channel, increased the peak amplitude of transition outward k+ currents and delayed rectifier. Also it is an effective blocker of one subtype of tetrodoxine (...
متن کاملA Two-Threshold Guard Channel Scheme for Minimizing Blocking Probability in Communication Networks
In this paper, we consider the call admission problem in cellular network with two classes of voice users. In the first part of paper, we introduce a two-threshold guard channel policy and study its limiting behavior under the stationary traffic. Then we give an algorithm for finding the optimal number of guard channels. In the second part of this paper, we give an algorithm, which minimizes th...
متن کاملBlock of neuronal fast chloride channels by internal tetraethylammonium ions
The classical potassium-selective ion channel blocker tetraethylammonium ion (TEA) was shown to block chloride-selective ion channels from excised surface membranes of acutely dissociated rat cortical neurons when applied to the formerly intracellular membrane surface. The patch voltage clamp method was used to record single channel currents from fast Cl channels in the presence of TEAi. At the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2018